Complementarity among species in horizontal versus vertical rooting space
نویسندگان
چکیده
Aims: Many experiments have shown a positive effect of species richness on productivity in grassland plant communities. However, it is poorly understood how environmental conditions affect this relationship. We aimed to test whether deep soil and limiting nutrient conditions increase the complementarity effect (CE) of species richness due to enhanced potential for resource partitioning. Methods: We grew monocultures and mixtures of four common grassland species in pots on shallow and deep soil, factorially combined with two nutrient levels. Soil volume was kept constant to avoid confounding soil depth and volume. Using an additive partitioning method, we separated biodiversity effects on plant productivity into components due to species complementarity and dominance. Important findings: Net biodiversity and complementarity effects were consistently higher in shallow pots, which was unexpected, and at the low nutrient level. These two results suggest that although belowground partitioning of resources was important, especially under low nutrient conditions, it was not due to differences in rooting depths. We conclude that in our experiment (i) horizontal root segregation might have been more important than the partitioning of rooting depths and (ii) that the positive effects of deep soil found in other studies were due to the combination of deeper soil with larger soil volume. Journal of Plant Ecology
منابع مشابه
Rock walls: small-scale diversity hotspots in the subtidal Gulf of Maine
The physical orientation of rocky substrate profoundly affects subtidal marine communities of sessile organisms. Anecdotal descriptions of dramatic differences between communities on rock walls and adjacent horizontal rocky bottoms abound in the literature and are common knowledge among scuba divers, yet these differences have rarely been quantified by ecologists. We sampled rock walls and adja...
متن کاملA Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem
In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.
متن کاملPerformance Model for Vertical Wells with Multi-stage Horizontal Hydraulic Fractures in Water Flooded Multilayer Reservoirs
For the characteristics of horizontal fractures in shallow low-permeability oil layers after hydraulic fracturing in multilayer reservoirs, horizontal fractures are taken equivalent to an elliptical cylinder with the reservoir thickness using the equivalent permeability model; then, upon the elliptic seepage theory, the seepage field which has led by a vertical well with horizontal fractures is...
متن کاملBurrowing behavior of freshwater mussels in experimentally manipulated communities
We experimentally manipulated mussel community structure and observed mussel burrowing behavior in mesocosms held in a greenhouse. Vertical positions, vertical movements, and horizontal movements of Actinonaias ligamentina, Amblema plicata, Fusconaia flava, and Obliquaria reflexa were recorded during five 11-d trials. Community structure was manipulated by constructing communities with 11 diffe...
متن کاملProgrammed two-dimensional self-assembly of multiple DNA origami jigsaw pieces.
We demonstrate a novel strategy of self-assembly to scale up origami structures in two-dimensional (2D) space using multiple origami structures, named "2D DNA jigsaw pieces", with a specially designed shape. For execution of 2D self-assembly along the helical axis (horizontal direction), sequence-programmed tenon and mortise were introduced to promote selective connections via π-stacking intera...
متن کامل